Industrial Wood Pellets in Japan
Market Drivers and Potential Demand

Introduction to the Session by William Strauss
The FutureMetrics Team for Power Plant Co-firing and Full-firing

- Leading global consultant in the wood pellet sector
- Provides information, analysis, operations guidance and strategic advice to many of the world’s leading companies in the wood pellet sector

- Major manufacturer of wood pellets produced from sustainably managed working forests for use as a renewable, low-carbon fuel
- Subsidiary of Drax Group, the world leader in industrial-scale biomass technology, logistics and operations

- Global leader in providing engineering services to power stations
- Significant experience and in-house expertise in power plant modifications from coal to co-firing or full conversion to wood pellet fuel

- Global leader in building and modifying power plants
- Significant experience in conversion projects, including EPC roles that include guarantees on both reliability and rating
FutureMetrics View of the Potential Global Industrial Pellet Sector

US depends on who wins the election!!
Without the US – Trump becomes president.
If growth is as expected in previous slide...

source: FAO, Argus Biomass, BBI Pellet Mill database, October, 2016, Forecast and analysis by FutureMetrics
The Japanese Market for Industrial Wood Pellets
Japan is the most energy dependent country
There are several policies in Japan that are driving current growth and will drive future growth.

Under one plausible scenario, Japan could be demanding well in excess of 15 million tonnes per year of wood pellets by the mid-2020’s.
Most of Japan’s imports are currently from western Canada.

The Japanese utilities and/or the Japanese trading houses are interested in long-term contracts with well-established suppliers and strict accountability for sustainability and the legality of harvesting.

These requirements favor North American pellet producers.
Increasing demand from Japan will stimulate new industrial wood pellet production capacity in the US, Canada, and from other producer jurisdictions that can deliver pellets at competitive prices and source feedstock legally, sustainably, and with security for long-term supply and durability of contracts.
Policies that will support industrial wood pellets in Japan:

[1] Feed in Tariff (FIT)

The FIT is offered to independent power producers (IPPs) at rates that vary depending on the type of energy. For wood pellets and other biomass such as palm kernel shells (PKS) the current FIT is 24 Yen per kWh. This converts to about $0.233/kWh or $233/MWh. The rate is set and guaranteed for 20 years.

If all circulating fluid bed projects use 100% PKS or other biomass fuels other than pellets, pellet demand by the IPPs is expected to be about 1.2 million tons per year by 2020.
Palm Kernel Shell (PKS) – Not suitable for large scale pulverized coal boilers but useful in smaller circulating fluid bed boilers.

[PKS] demand is expected to rise sharply as a result of increased Japanese demand. Japanese PKS imports rose to 306,000 tonnes in the first half of 2016, a 75% increase on imports during the first half of 2015, and are expected to increase further throughout the year.

Source: Argus Biomass Report, Sept 28, 2016

While the technology for producing PKS is well developed, unlike the industrial wood pellet supply chain, there are many risks in the PKS supply chain. Supply risk is summarized by the following:

- Highly manual operations and logistics
- Multiple locations have to be aggregated
- Weather / crop Issues
- Unreliable suppliers
- Constant infrastructure challenges
- Port congestion
- Producer countries domestic biomass demand increasing
- Local mills using PKS themselves

source: Asia Resource Partners; CPO = crude palm oil
Japan's PKS demand growth may trigger shortage

Singapore, 12 October (Argus) — Japan may need as much as 20mn-30mn t/yr of palm kernel shells (PKS) by 2030 to help meet its renewable energy standard, likely generating a shortfall given Malaysian and Indonesian production levels, Japan's External Trade Organisation (Jetro) said.

Japan's sole PKS suppliers, Indonesia and Malaysia, produce 7.5mn t/yr and 5.5mn t/yr of PKS respectively and also have large and growing domestic markets.

This means "there will naturally be a shortage" of PKS as Japan nears its renewable energy target of 22-24pc for electricity generation by 2030. Some Japanese utility buyers have concerns about security of supply and sustainability when it comes to PKS, and see wood pellets as a more secure and sustainable alternative.

But this has not deterred the strong forecasts for PKS demand. Japan's Biomass Fuel president Eisuke Nomura projected earlier this year that Japan's PKS imports could reach 2.9mn t/yr by 2020. (source: Argus Direct)
Japan has already implemented a target reduction of CO\textsubscript{2} emissions that will require all power companies to reduce CO\textsubscript{2} per kWh by 35% from 2013 levels by 2030.

It is currently a voluntary target but a few major utilities are already co-firing wood pellets at modest 3% ratios.

There are a few other pulverized coal (PC) power stations also co-firing and there are some that are having discussions for pellet fuel supply. Those stations either currently co-firing or in discussions about fuel supply add up to about 18,700 MWs.

The chart on the next slide shows pellet demand at these stations under three co-firing ratios.
Tonnes per Year of Pellet Demand for Selected PC Power Stations in Japan at Three Co-firing Ratios

Data from confidential sources; Analysis by FutureMetrics
Shinchi power station is a 2 x 1,000 MW supercritical coal plant in Japan.

Co-firing at ~3% wood pellets with no mods to the plant.
~130,000 tonnes per year.

Purpose built ship unloader for pellets.
The Japanese government’s analysis expects the nation to demand about 1,065 billion kWh’s in 2030. The government’s strategic plan includes a breakdown of the desired/mandated energy mix in 2030.

<table>
<thead>
<tr>
<th>Based on 1,065 Million MWh's of Demand in 2030</th>
<th>Energy Mix</th>
<th>Millions of MWh's</th>
<th>Renewable Portion</th>
<th>Energy Mix</th>
<th>Millions of MWh's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable</td>
<td>23%</td>
<td>244.95</td>
<td>Geothermal</td>
<td>1.0%</td>
<td>10.65</td>
</tr>
<tr>
<td>Nuclear</td>
<td>21%</td>
<td>223.65</td>
<td>Biomass</td>
<td>4.3%</td>
<td>45.80</td>
</tr>
<tr>
<td>LNG</td>
<td>27%</td>
<td>287.55</td>
<td>Wind</td>
<td>1.7%</td>
<td>18.11</td>
</tr>
<tr>
<td>Coal</td>
<td>26%</td>
<td>276.90</td>
<td>Solar</td>
<td>7.0%</td>
<td>74.55</td>
</tr>
<tr>
<td>Oil</td>
<td>3%</td>
<td>31.95</td>
<td>Hydro</td>
<td>9.0%</td>
<td>95.85</td>
</tr>
<tr>
<td>TOTALS</td>
<td>100%</td>
<td>1,065.00</td>
<td></td>
<td>23.0%</td>
<td>244.95</td>
</tr>
</tbody>
</table>
Large existing power plants use pulverized coal fuel systems in which the coal is ground to a fine particle size and pneumatically conveyed to the burners. Only wood pellets can be easily ground and used in PC boilers. In the table below, the assumption is that 30% of the 6,150 MWs are produced from pellets being co-fired with coal in modified existing coal power stations.

Analysis of Potential Wood Pellet Demand Based on Government’s Best Energy Mix Policy for 2030

<table>
<thead>
<tr>
<th>Based on 1,065 Million MWh's of Demand in 2030</th>
<th>Energy Mix</th>
<th>Millions of MWh's</th>
<th>Renewable Portion</th>
<th>Energy Mix</th>
<th>Millions of MWh's</th>
<th>Capacity Factor</th>
<th>Nameplate MW's Needed</th>
<th>Tonnes of Wood Pellets per Year if 30% of Needed MW's are Produced from Pellets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable</td>
<td>23%</td>
<td>244.95</td>
<td></td>
<td>Geothermal</td>
<td>1.0%</td>
<td>10.65</td>
<td>90%</td>
<td>1,351</td>
</tr>
<tr>
<td>Nuclear</td>
<td>21%</td>
<td>223.65</td>
<td></td>
<td>Biomass</td>
<td>4.3%</td>
<td>45.80</td>
<td>85%</td>
<td>6,150</td>
</tr>
<tr>
<td>LNG</td>
<td>27%</td>
<td>287.55</td>
<td></td>
<td>Wind</td>
<td>1.7%</td>
<td>18.11</td>
<td>30%</td>
<td>6,889</td>
</tr>
<tr>
<td>Coal</td>
<td>26%</td>
<td>276.90</td>
<td></td>
<td>Solar</td>
<td>7.0%</td>
<td>74.55</td>
<td>25%</td>
<td>34,041</td>
</tr>
<tr>
<td>Oil</td>
<td>3%</td>
<td>31.95</td>
<td></td>
<td>Hydro</td>
<td>9.0%</td>
<td>95.85</td>
<td>90%</td>
<td>12,158</td>
</tr>
<tr>
<td>TOTALS</td>
<td>100%</td>
<td>1,065.00</td>
<td></td>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td>60,589</td>
</tr>
</tbody>
</table>

2030 MWh demand and energy mix from Japan Ministry of Economy, Trade, and Industry

Analysis by FutureMetrics
There is a scenario in which the Japanese market’s demand for biomass could be much larger.

Under the government’s policy for the best energy best mix, any generation not produced by nuclear has to be made up by low carbon renewable generation.

Most experts in Japan think that it is unlikely that Japan will generate 23% of its power from nuclear stations in 2030.

If nuclear does not reach 23%, the best available renewable low carbon pathway that can supply baseload power is pellets being co-fired or full-fired in existing utility PC power stations.
<table>
<thead>
<tr>
<th>Low Nuclear Scenario Based on 1,065 Million MWh's of Demand in 2030</th>
<th>Low nuclear made up by baseload biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Mix</td>
<td>Millions of MWh's</td>
</tr>
<tr>
<td>Renewable</td>
<td>32%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>-12%</td>
</tr>
<tr>
<td>LNG</td>
<td>27%</td>
</tr>
<tr>
<td>Coal</td>
<td>26%</td>
</tr>
<tr>
<td>Oil</td>
<td>3%</td>
</tr>
<tr>
<td>TOTALS</td>
<td>100%</td>
</tr>
<tr>
<td>Geothermal</td>
<td>1.0%</td>
</tr>
<tr>
<td>Biomass</td>
<td>13.3%</td>
</tr>
<tr>
<td>Wind</td>
<td>1.7%</td>
</tr>
<tr>
<td>Solar</td>
<td>7.0%</td>
</tr>
<tr>
<td>Hydro</td>
<td>9.0%</td>
</tr>
<tr>
<td></td>
<td>32.0%</td>
</tr>
</tbody>
</table>

2030 MWh demand and energy mix from Japan Ministry of Economy, Trade, and Industry

Analysis by FutureMetrics
Conclusion

The Japanese industrial wood pellet market has a high likelihood of developing significant demand over the next decade.

Japanese buyers value the ability of the producer to offer contract longevity and security of certified sustainable supply.
Thank you!

William Strauss
(and Fritz)

FutureMetrics

FutureMetrics – Intelligent Analysis and Strategic Leadership for the Pellet Sector – WilliamStrauss@FutureMetrics.com